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EPL

Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed giant model training.
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CHAPTER
ONE

EASY PARALLEL LIBRARY

1.1 Overview

Easy Parallel Library (EPL) is a general and efficient library for distributed model training.

 Usability - Users can implement different parallelism strategies with a few lines of annotations, including data
parallelism, pipeline parallelism, tensor model parallelism, and their hybrids.

e Memory Efficient - EPL provides various memory-saving techniques, including gradient checkpoint, ZERO,
CPU Offload, etc. Users are able to train larger models with fewer computing resources.

* High Performance - EPL provides an optimized communication library to achieve high scalability and efficiency.

1.2 Examples

Here are a few examples of different parallelism strategies by changing only annotations. Please refer to API documen-
tation for API details and tutorials for more examples.

1.2.1 Data Parallelism

The following example shows a basic data parallelism annotation. The data parallelism degree is determined by the
allocated GPU number.

+ import epl

+ epl.init(

+ with epl.replicate(device_count=1):
model )

1.2.2 Pipeline Parallelism

The following example shows pipeline parallelism with two pipeline stages, each stage is computed with one GPU. If
the total GPU number is 4, EPL will automatically apply two-degree data parallelism over the model pipeline.

+ import epl

"

+ config = epl.Config({"pipeline.num_micro_batch": 43})
+ epl.init(config)

+ with epl.replicate(device_count=1, name="stage_0"):

(continues on next page)
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(continued from previous page)

model_partl1()
+ with epl.replicate(device_count=1, name="stage_1"):
model_part2()

1.2.3 Tensor Model Parallelism

The following example shows a tensor model parallelism annotation. We apply data parallelism to the ResNet part,
and apply tensor model parallelism to classification part.

import epl
config = epl.Config({"cluster.colocate_split_and_replicate": True})
epl.init(config)
with epl.replicate(8):
ResNet()
+ with epl.split(8):
classification()

+ + + +

1.3 Publication

If you use EPL in your publication, please cite it by using the following BibTeX entry.

@misc{jia2021whale,
title={Whale: Scaling Deep Learning Model Training to the Trillions},
author={Xianyan Jia and Le Jiang and Ang Wang and Jie Zhang and Xinyuan Li and.
—Wencong Xiao and Langshi chen and Yong Li and Zhen Zheng and Xiaoyong Liu and Wei Lin},
year={2021},
eprint={2011.09208},
archivePrefix={arXiv},
primaryClass={cs.DC}

4 Chapter 1. Easy Parallel Library




EPL

1.4 Contact Us

Feel free to open an issue, or join the Official Discussion Group on DingTalk.

1.4. Contact Us 5
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CHAPTER
TWO

INSTALLATION

You can install EPL by following instructions.

2.1 Requirements

¢ TensorFlow-GPU 1.15

2.2 Install from source

2.2.1 Build from NVIDIA TF1.15 DOCKER

nvidia-docker run -ti --gpus all --name build_epl _with_nvtf1.15_21.12 --net host --ipc.
—host -v /mnt:/mnt nvcr.io/nvidia/tensorflow:21.12-tfl-py3 bash

# clone and install EPL

git clone https://github.com/alibaba/EasyParallellibrary.git
cd EasyParallelLibrary

pip install .

2.2.2 Build from TensorFlow TF1.15 DOCKER

nvidia-docker run -ti --gpus all --name build_epl _with_tf1.15 --net host --ipc host -v /
—mnt:/mnt tensorflow/tensorflow:1.15.5-gpu-py3 bash

# install nccl

apt update

apt install libnccl2 libnccl-dev

# clone and install EPL

git clone https://github.com/alibaba/EasyParallellibrary.git
cd EasyParallellLibrary

pip install .
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CHAPTER
THREE

QUICK START

In this section, we will use a simple DNN training example to show how to use EPL for distributed training.

3.1 EPL Annotation

A user needs to first annotate local_model.py with EPL parallelism strategies. The following example shows a data
parallelism sample by adding three lines.

+ import epl

+ epl.init()
+ epl.set_default_strategy(epl.replicate(1))

for i in range(10):
train_loss, _, step = sess.run([loss, train_op, global_step])
print("Iteration %s , Loss: %s ." % (step, train_loss))
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3.2 Launch a parallel training

Then the user needs to provide a local launch script such as run. sh, as follows:

# run.sh
python local_model.py

The following script launches a parallel training program with 1 worker and 2 GPUs.

epl-launch --num_workers 1 --gpu_per_worker 2 run.sh

10
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CHAPTER
FOUR

PARALLELISM STRATEGY API

In this section, we will introduce the parallelism primitive API, which can be used to build various parallelism strategies.
Firstly, we will recap some basic concepts used in this document.

* Model replica: local DNN model (without parallelism or gradient accumulation).

* micro batch size(mb): number of samples consumed by one model replica in each training iteration.

e num_micro_batch: number of micro batch used in pipeline or GA for each model replica in each training iteration.

o global batch size: Assume the model replica number is $N$, then the global batch size is N * mb *
num_micro_batch.

 TaskGraph: TaskGraph is a subset of the model for parallel transformation and execution.

Unless otherwise specified, the default batch size of the local model is micro batch size.

4.1 Parallel Strategy Primitive

With strategy primitive annotation, EPL partitions the model into multiple TaskGraphs and applies the parallelism
strategies to the TaskGraphs. EPL provides two basic strategy primitives: replicate and split. Each strategy
annotation generates one TaskGraph.

4.1.1 replicate
replicate annotates operations to data parallelism, where each replica consumes different input data. Operations
defined under replicate scope form one TaskGraph.

1. If the whole model is annotated with replicatei.e. there is one TaskGraph, then it is the same as the traditional
data parallelism.

2. If part of the model is annotated with replicate, EPL will perform data parallelism for the corresponding
TaskGraph.

API definition:

replicate(device_count=None, name=None)

Args Required | Description
device_count | True device count for one model replica defined under replicate scope.
name strategy name

11
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For data parallelism, one model replica is placed in one GPU (device_count=1), and EPL will infer the total num-
ber of replicas given the allocated number of GPUs. When device_count>1, EPL will split the input batch into
device_count parts when replicating the model, and keeps the total batch size of replicas the same as the original
local batch size.

The following examples show data parallelism, where each model replica is placed in one GPU. If the total allocated
GPU number is 8, then the model will be scaled to 8 GPUs to perform data parallelism training.

import epl

epl.initQ)

with epl.replicate(device_count=1):
model O

4.1.2 split

split annotates model to be split. Operations defined under split scope form a TaskGraph, which is split over
multiple GPUs for parallel computation.

API definition:

split(device_count=None, name=None)

Args Required | Description
device_count | True number of devices to split and place the model.
name strategy name

The following example shows the tensor model parallelism. The model is split over 8 GPUs.

import epl

epl.initQ)

with epl.split(device_count=8):
model O

4.2 set_default_strategy

EPL also provides set_default_strategy to set the default parallelism strategies for operations.

set_default_strategy(strategy)

Args Required | Description
strategy | True parallelism strategy.

The following example shows the data parallelism by setting the default strategy to replicate.

import epl

epl.initQ)
epl.set_default_strategy(epl.replicate(device_count=1))
model ()

12 Chapter 4. Parallelism Strategy API
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4.3 API Instruction

* By default, different TaskGraphs are placed in different devices.
* We do not allow nesting strategy annotations.

» Users only need to annotate the forward part of the model, the backward and apply operations are automatically
co-located with the forward operations.

To learn how to use the above API to implement various parallelism strategies, such as pipeline parallelism or hybrid
parallelism, please refer to parallelism examples.

4.3. API Instruction 13
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CHAPTER
FIVE

PARALLELISM API EXAMPLES

In this section, we will introduce how to use EPL parallelism strategy APIs to implement different parallelism strategies,
as well as their hybrids.

5.1 Data Parallelism

The following snippet shows the data parallelism, where each model replica is placed in one GPU. If the user uses 8
GPUs, then it is a data parallelism task with 8 replicas.

import epl

epl.initQ)

with epl.replicate(device_count=1):
model O

5.2 Pipeline Parallelism

In the following example, the model is divided into two TaskGraphs, i.e., “stage_0" and “stage_1". We can set the num-
ber of micro batches of the Pipeline by configuring the pipeline.num_micro_batch parameter. This model requires
two GPUs to place “stage_0” and “stage_1” for each model replica. If the task uses 8 GPUs, EPL will automatically
apply a 4-degree data parallelism over the pipeline.

import epl

config = epl.Config({"pipeline.num_micro_batch": 43})

epl.init(config)

with epl.replicate(device_count=1, name="stage_0"):
model_partl()

with epl.replicate(device_count=1, name="stage_1"):
model_part2()

15
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5.3 Tensor Model Parallelism

5.3.1 Large-scale Image Classification

The following example applies different strategies to different parts of the model. We apply data parallelism for the
resnet part and apply tensor model parallelism to the classification part. To reduce the communication overhead
among the two taskgraphs, we set cluster.colocate_split_and_replicate to colocate the two taskgraphs to the
same devices.

import epl
config = epl.Config({"cluster.colocate_split_and_replicate": True})
epl.init(config)
with epl.replicate(8):
resnet()
with epl.split(8):
classification()

5.3.2 MOE Transformer

The following example shows the implementation of a MoE model. We split the tensors for MoE, and set the default
strategy as replicate for the remaining operations.

import epl

config = epl.Config({"cluster.colocate_split_and_replicate": True})
epl.init(config)

total_gpu_num = epl.Env.get().cluster.total_gpu_num
epl.set_default_strategy(epl.replicate(total_gpu_num))
AttentionAndGating()

with epl.split(total_gpu_num):
MOE_Variable_Define()

MOE_Calculation_Define()

16 Chapter 5. Parallelism APl Examples




CHAPTER
SIX

CONFIGURATION

Users can enable EPL optimized features by configuration.
The configuration tables include:

e Param Key: parameter name, which is defined in the format of “param_category.attribute”. param_category
is the category of parameterse.g., pipeline. The attribute is the detailed configuration attribute, e.g.,
num_micro_batch.

» Type: parameter type, e.g. str/float/integer/bool
* Default: default value
* Description: parameter description

Configuration APi:

Config(param_dict=None)

Args Type | Re- Description
quired
param_dict | dict False Parameter dict, where key is the parameter key and value is the parameter value.
Example:
import epl

config = epl.Config({"pipeline.num_micro_batch": 4})
epl.init(config)

In the above example, we set the configuration by passing a param_dict.

You can refer to the following configuration tables for the full parameters.

17
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6.1 Pipeline Configuration

Param Key Type| Default Description
“pipeline.num_microirbatch”l Pipeline number of micro batches.
te-
ger
“pipeline.num_stagesin- None If auto.auto_parallel is True, you can set pipeline.num_stages
te- to automatically partition pipeline stages.
ger
“pipeline.strategy” | str “Prefer- Pipeline schedule policies can be one of [“PreferBackward”, “PreferFor-
Backward” | ward”]

* PreferBackward: pipeline strategy similar to PipeDream.

* PreferForward: pipeline strategy similar to GPipe.

6.2 Gradient Checkpoint (GC) Configuration

Gradient checkpoint reduces the peak memory by saving the activation memory consumption through re-computation.

ent_checkpoint.check _grdg

dients’

Param Key Typel De- | Description

fault
“gradi- str | Type to select checkpoint tensor, can be one of (“collection”, “auto’). “collec-
ent_checkpoint.type” tion”: user selected GC tensors. “auto”: automatically searching the GC tensors

by analyzing the model.
“gradi- in- | -1 The last taskgraph index to apply GC.
ent_checkpoint.end_taskgraph”
ger

“gradi- bool | False| Validate the GC gradients.

Examples:

Automatic GC works well for Transformer models.

import epl

# Enable auto GC.
config = epl.Config({"gradient_checkpoint.type": "auto"})

epl.init(config)

Users can also specify the checkpoint tensors by adding them to a collection, shown as follows:

import tensorflow as tf

import epl

config = epl.Config({"gradient_checkpoint.type": "collection"})

epl.init(config)

# specify a checkpoint tensor

tensor = opl()

tf.add_to_collection("checkpoints", tensor)

18
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6.3 Zero Configuration

ZeRO leverages the aggregate computation and memory resources of data parallelism to reduce the memory and com-
pute requirements of each device (GPU) used for model training. You can refer to DeepSpeed ZeRO for more infor-
mation.

Param Type | De- Description
Key fault
“zero.level” | str “?

ZeRO levelEPL now supports “v1”, which partitions the optimizer states and gra-
dients.

import epl

config = epl.Config({"zero.level™: "v1"})
epl.init(config)

Note
1. EPL ZeRO works only for data parallelism.
2. Now ZeRO cannot be used with gradient accumulation.

3. ZeRO only works for GPU cluster of Nx1 configuration, i.e., N workers, and each worker with one GPU.

6.4 Offload Configuration

EPL supports training large models by offloading weight to CPU memory.
Users can offload parameters by setting offload.level.

e “v0”: offload all weight to CPU.

Param Key Type | Default | Description
“offload.level” | str «” offload level.

Example:

import epl
config = epl.Config({"offload.level™: "v0"})
epl.init(config)

6.5 Memory-efficient AMP Configuration

Memory-efficient AMP does not keep the FP16 weight in memory, instead, EPL casts the weight when needed.

Users can enable EPL. AMP by setting amp . level.

Param Key Type Default Description

“amp.level” str « Auto mixed precision level, currently only supports O1.
“amp.debug_log” | bool False Enable amp debug log.

“amp.loss_scale” | integer/str | “dynamic” | Loss scale for amp, can be “dynamic” or number(for fix).

6.3. Zero Configuration 19
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Example:

import epl

config = epl.Config({"amp.level™:

# fixed loss scaling

config = epl.Config({"amp.level":

epl.init(config)

"01", "amp.loss_scale":

"01", "amp.loss_scale": 128})

"dynamic"})

6.6 Optimizer Configuration

Optimizer-related configuration. When updating the parameters in the training process, some user-defined optimiz-
ers will consume a large amount of temporary tensor buffers, which increases the peak memory a lot. We can set
num_apply_group to save memory by updating parameters in groups.

Param Key

Type Default

Description

“optimizer.num_apply_group”

integer | 1

Number of gradient apply groups.

Example:

import epl

config = epl.Config({"optimizer.num_apply_group": 30})
epl.init(config)

6.7 Cluster Configuration

ter.device_place_prefer_intra_node

59

Param Key Type De- | Description
fault
“clus- bool | True | Prefer placing one model replica within node.

@

“clus- str Visible devices for session. Usually, its value is set by the scheduler.
ter.run_visible_devices”
“clus- bool | False | If cluster.colocate_split_and_replicate is set to Truedifferent
ter.colocate_split_and_replicate” taskgraphs will be co-locate in the same device.

20 Chapter 6. Configuration
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6.8 Communication Configuration

Param Key Type | De- Description
fault

“communica- inte- | 2 number of communicators.
tion.num_communicators” ger
“communica- bool | False | Whether to transform sparse tensor to dense tensor before
tion.sparse_as_dense” communication.
“communication.max_splits” inte- | 5 Max number of communication groups for tensor fusion.

ger
“communication.fp16” bool | False | Enable FP16 AllReduce.
“communication.fp16_scale” inte- | 128 Scale the gradients after FP16 AllReduce.

ger
“communica- bool | False | Clip gradients after AllReduce.
tion.clip_after_allreduce”
“communica- str “mean”| AllReduce type, can be one of (“mean”, “sum”)
tion.gradients_reduce_method”

6.9 10 Configuration
Param Key Type | De- Description
fault
“jo.slicing” bool | False Whether to slice the dataset.
“ijo.unbalanced_io_slicing|’ bool | False Allow unbalanced dataset slicing.
“jo.drop_last_files” bool | False Partition the data files evenly, and drop the last files that cannot be
divided.

6.10 Auto Parallel Configuration

Param Key Type

Default

Description

“auto.auto_parallel” | bool

False

Whether to enable automatic parallelism. (Experimental)

6.8. Communication Configuration

21
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CHAPTER
SEVEN

DATA PARALLELISM

In this section, we will show how to scale the training of ResNet-50 model with EPL data parallelism.

EPL can easily transform the local bert training program to a distributed one by adding a few lines of code.

+ import epl
+ epl.init()
+ epl.set_default_strategy(epl.replicate(device_count=1))

The following command launches a data parallelism program with two model replicas over two GPUs.

epl-launch --num_workers 2 --gpu_per_worker 1 scripts/train_dp.sh

scripts/train_bert_base_dp.sh is a local training script, epl-launch will automatically launch a distributed
training program by configuring cluster information.

You can refer to EPL ResNet Example for detailed implementation.

23
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CHAPTER
EIGHT

PIPELINE PARALLELISM

In this section, we will show how to scale the training of Bert model with EPL pipeline parallelism.

8.1 Training setup.

The model code is based on https://github.com/google-research/bert .

8.1.1 Get pretrained bert base model.

wget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
unzip uncased_L-12_H-768_A-12.zip

8.1.2 Prepare dataset

mkdir data

cd data

wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-vl.1.json

wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-vl.1.json

wget https://raw.githubusercontent.com/allenai/bi-att-flow/master/squad/evaluate-vl.1.py

8.2 Distributed Bert training

8.2.1 Pipeline parallelism

To implement Bert pipeline parallelism, EPL only needs to change the annotation and configuration, as follows:

+ import epl
+ epl.init(epl.Config({"pipeline.num_micro_batch": 4}))

+ epl.set_default_strategy(epl.replicate(l))

+ epl.set_default_strategy(epl.replicate(l))

25
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You can refer to EPL Bert Example for detailed implementation.

The following command launches a pipeline parallelism program with two stages.

epl-launch --num_workers 1 --gpu_per_worker 2 scripts/train_bert_base_dp.sh

8.3 Evaluation

After training, you can perform the following commands to get the evaluation results.

SQUAD_DIR=data
python $SQUAD_DIR/evaluate-vl1.1l.py $SQUAD_DIR/dev-vl.l.json ${output_dir}/predictions.
—json

You are expected to get f1 ~= 88.0, exact_match ~= 79.8 after 2 epochs.

26 Chapter 8. Pipeline Parallelism
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CHAPTER
NINE

MOE TENSOR MODEL PARALLELISM

This repo contains MoE (Mixture of Experts) transformer training examples with EPL.

9.1 Training setup.

The model code is based on https://github.com/tensorflow/tensor2tensor .

9.1.1 Prepare dataset

Refering to https://github.com/tensorflow/tensor2tensor#adding-a-dataset, script for translate_ende_wmt32k shows
as following:

t2t-datagen --data_dir=data --tmp_dir=data/original/dataset --problem=translate_ende_
—wmt32k

Or, set FLAGS.generate_data in scripts/train_moe_t5.sh to generate dataset for problem FLAGS.problem
automatially.

9.2 Distributed Training

To implement MoE tensor model parallelism, EPL only needs to change the annotation and configuration, as follows:

+ import epl

+ config = epl.Config({"cluster.colocate_split_and_replicate": True})
+ epl.init(config)

+ epl.set_default_strategy(epl.replicate(total_gpu_num))

+ with epl.split(total_gpu_num):
MOE_Variable_Define()

You can refer to EPL MOE Example for detailed implementation.

The following command launches a tensor model parallelism program with two workers.

27



https://github.com/alibaba/FastNN/tree/master/moe/

EPL

epl-launch --num_workers 2 --gpu_per_worker 1 scripts/train_moe_t5.sh

28 Chapter 9. MoE Tensor Model Parallelism
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